The given expressions are,
[tex]\begin{gathered} 5x+2y=19\ldots\text{.}\mathrm{}(1) \\ -x+2y=1\ldots\text{.}\mathrm{}(2) \end{gathered}[/tex]From the second equation, we have,
[tex]x=2y-1\ldots\text{.}\mathrm{}(3)[/tex]Substituting this value in the first equation, we have,
[tex]\begin{gathered} 5(2y-1)+2y=19 \\ 10y-5+2y=19 \\ 12y=19+5 \\ 12y=24 \\ y=\frac{24}{12}=2 \end{gathered}[/tex]Now, substituting this value of y in equation 3, we have,
[tex]x=2\times2-1=4-1=3[/tex]Thus, the solution is x = 3 and y = 2