First, find the coordinates of each point looking to the graph.
1) Point T: (-5,0)
2) Point R: (1,2)
3) Point S: (7,4)
Use the slope formula to find the slope for each pair of points:
[tex]\begin{gathered} m_{TR}=\frac{2-0}{1-(-5)} \\ =\frac{2}{1+5} \\ =\frac{2}{6} \\ =\frac{1}{3} \end{gathered}[/tex][tex]\begin{gathered} m_{RS}=\frac{4-2}{7-1} \\ =\frac{2}{6} \\ =\frac{1}{3} \end{gathered}[/tex][tex]\begin{gathered} m_{TS}=\frac{4-0}{7-(-5)} \\ =\frac{4}{7+5} \\ =\frac{4}{12} \\ =\frac{1}{3} \end{gathered}[/tex]Therefore, the slope of TR, RS and TS is 1/3.
7) The slope of the line is constant and equal to 1/3.
8) The constant rate of change of the line is 1/3.