Respuesta :

EXPLANATION

Assuming the given table, we can compute the calculations as shown as follows;

[tex]\sum ^{}_{}xy=61\cdot65+39\cdot75+98\cdot100+21\cdot93+75\cdot95+33\cdot34+76\cdot15+43\cdot68[/tex][tex]\sum ^{}_{}xy=3965+2925+9800+1953+7125+1122+1140+2924[/tex]

Adding terms:

[tex]\sum ^{}_{}xy=30954[/tex][tex]\sum ^{}_{}x^2y=61^2\cdot65+39^2\cdot75+98^2\cdot100+21^2\cdot93+75^2\cdot95+33^2\cdot34+76^2\cdot15+43^2\cdot68[/tex]

Computing the powers:

[tex]\sum ^{}_{}x^2y=3721\cdot65+1521\cdot75+9604\cdot100+441\cdot93+5625\cdot95+1089\cdot34+5776\cdot15+1849\cdot68[/tex]

Multiplying terms:

[tex]\sum ^{}_{}x^2y=241865+114075+960400+41013+534375+37026+86640+125732[/tex]

Adding terms:

[tex]\sum ^{}_{}x^2y=2141126[/tex]

Now, we need to compute the third equation:

[tex](\sum ^{}_{}xy)^2=(61\cdot65+39\cdot75+98\cdot100+21\cdot93+75\cdot95+33\cdot34+76\cdot15+43\cdot68)^2[/tex]

Multiplying terms:

[tex](\sum ^{}_{}xy)^2=(3965+2925+9800+1953+7125+1122+1140+2924)^2[/tex]

Adding numbers:

[tex](\sum ^{}_{}xy)^2=(30954)^2[/tex]

Computing the power:

[tex](\sum ^{}_{}xy)^2=958150116[/tex]