Respuesta :

Answer:

S' = (-4, -10)

T' = (-4, 0)

U' = (3, 0)

V = (3, -10)

Explanation:

Given:

quadrilateral STUV

To find:

The coordinates of the vertex when it is translated 7 units to the left and 7 units down

To determine the new coordinates, we wil be apply int theranslation rlule:

[tex]\begin{gathered} Translation\text{ to the left: }(x.\text{ y\rparen }\rightarrow\text{ \lparen x-a, y\rparen } \\ Translation\text{ to the right: \lparen x, y\rparen }\rightarrow\text{ \lparen x + a, y\rparen} \\ Translat\imaginaryI on\text{ }to\text{ the top: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y + b\rparen} \\ Translation\text{ to down: \lparen x, y\rparen }\rightarrow\text{ \lparen x, y- b\rparen} \end{gathered}[/tex]

Initial coordinates of the vertx:

S = (3, -3), T = (3, 7), U = (10, 7) and V = (10, -3)

[tex]\begin{gathered} Applying\text{ the translation rule:} \\ S^{\prime}\text{ = \lparen3 - 7, -3-7\rparen= \lparen-4, -10\rparen} \\ T^{\prime}\text{ = \lparen3-7, 7-7\rparen = \lparen-4, 0\rparen} \\ U^{\prime}\text{ = \lparen10-7, 7-7\rparen = \lparen3, 0\rparen} \\ V^{\prime}\text{ = \lparen10-7, -3-7\rparen= \lparen3, -10\rparen} \end{gathered}[/tex]

S' = (-4, -10)

T' = (-4, 0)

U' = (3, 0)

V = (3, -10)