Answer:
Graphing the equation we have;
Explanation:
Given the equation;
[tex]x+5y=40[/tex]the slope of the line can be derived by expressing the equation in slope-intercept form;
[tex]\begin{gathered} 5y=-x+40 \\ y=-\frac{1}{5}x+\frac{40}{5} \\ y=-\frac{1}{5}x+8 \end{gathered}[/tex]So, the slope and y-intercept are;
[tex]\begin{gathered} \text{slope m = -}\frac{1}{5} \\ y-\text{intercept b = 8} \end{gathered}[/tex]to graph the equation, let us find the x-intercept;
[tex]\begin{gathered} at\text{ y=0;} \\ x+5y=40 \\ x+0=40 \\ x=40 \\ (40,0) \\ at\text{ x=0;} \\ (0,8) \end{gathered}[/tex]Graphing the equation we have;
Other points on the graph includes;
[tex]\begin{gathered} at\text{ x=10}; \\ y=-\frac{1}{5}(10)+8=-2+8=6 \\ (10,6) \\ at\text{ x=20;} \\ y=-\frac{1}{5}(20)+8=-4+8=4 \\ (20,4) \end{gathered}[/tex]