find the sum of the first 6 terms of the following sequence. round to the nearest hundredth if necessary.35, 14, 28/5,...sum of a finite geometric series:Sn=a1-a1^r^n/1-r

Respuesta :

58.09

Explanation

To find the sum of a finite geometric series, use the formula,

[tex]S_n=\frac{a(1-r^n)}{(1-r)}[/tex]

where

[tex]\begin{gathered} a=\text{ first term} \\ r=\text{ common ratio} \\ n=\text{ number of terms} \\ S_n=sumo\text{f the firts n terms} \end{gathered}[/tex]

so

Step 1

find the common ratio :

To calculate the common ratio in a geometric sequence, divide the n^th term by the (n - 1)^th term,in other words you can just divide each number from the number preceding it in the sequence

[tex]coomin\text{ ratio =}\frac{n\text{ term }}{(n-1)\text{ term}}[/tex]

so

[tex]common\text{ ratio=}\frac{\frac{28}{5}}{\frac{14}{1}}=\frac{28}{70}=0.4[/tex]

so r= 0.4

Step 2

Now we can use the formula

a)

let

[tex]\begin{gathered} r=0.4 \\ n=\text{ 6} \\ a=35 \end{gathered}[/tex]

b) finally, replace in the formula

[tex]\begin{gathered} S_n=\frac{a(1-r^n)}{(1-r)} \\ S_n=\frac{35(1-0.4^6)}{(1-0.4)} \\ Sn=35*1.62984 \\ Sn=58.0944\text{ } \\ rounded \\ S_n=58.09 \end{gathered}[/tex]

therefore, the answer is

58.09

I hope this helps you