Respuesta :

Given this is a one of the endpoints of the segment:

[tex](1,-3)[/tex]

You know that the midpoint is:

[tex](2,9)[/tex]

By definition, the formula for finding the midpoint of a segment is:

[tex](x_m,y_m)=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where:

- The coordinates of the midpoint are:

[tex](x_m,y_m)[/tex]

- And the coordinates of the endpoints are:

[tex]\begin{gathered} (x_1,y_1) \\ (x_2,y_2) \end{gathered}[/tex]

In this case, you can set up that:

[tex]\begin{gathered} x_m=2 \\ y_m=9 \\ \\ x_1=1 \\ y_1=-3 \end{gathered}[/tex]

Then, you can set up this equation to find the x-coordinate of the other endpoint:

[tex]2=\frac{1+x_2}{2}[/tex]

Solving for:

[tex]x_2[/tex]

You get:

[tex](2)(2)=1+x_2[/tex][tex]\begin{gathered} 4-1=x_2 \\ x_2=3 \end{gathered}[/tex]

Set up the following equation to find the y-coordinate of the other endpoint:

[tex]9=\frac{-3+y_2}{2}[/tex][tex](9)(2)=-3+y_2[/tex][tex]\begin{gathered} 18+3=y_2 \\ y_2=21 \end{gathered}[/tex]

Hence, the answer is:

[tex](3,21)[/tex]