Answer:
3a² + 6ax + 5a
Explanation:
Given the following function
g(x) = 3x² - 5x
Determine g(x+a)
g(x+a) = 3(x+a)² - 5(x+a)
Expand the result
g(x+a) = 3(x² + 2ax + a²) - (5x - 5a)
g(x+a) = 3x² + 6ax + 3a² - 5x + 5a
Determine g(x + a) - g(x)
g(x + a) - g(x) = 3x² + 6ax + 3a² - 5x + 5a - (3x² - 5x)
g(x + a) - g(x) = 3x² + 6ax + 3a² - 5x + 5a - 3x² + 5x
Collect the like terms
g(x + a) - g(x) = 3x² - 3x² - 5x + 5x + 6ax + 3a² + + 5a
g(x + a) - g(x) = 6ax + 3a² + 5a
g(x + a) - g(x) = 3a² + 6ax + 5a
Hence the required result for the function g(x + a) - g(x) is 3a² + 6ax + 5a