Answer:
x = 14
Explanation:
To get the value of x, we wll be using the SOH CAH TOA identity
Using sin theta = opposite/hypotenuse
[tex]\begin{gathered} sin45\text{ = }\frac{h}{7\sqrt[]{6}} \\ h\text{ =7}\sqrt[]{6}\text{ sin45} \\ h\text{ = 7}\sqrt[]{6}\times\frac{1}{\sqrt[]{2}} \\ h\text{ = 7}\sqrt[]{3} \end{gathered}[/tex]h is the vertical height of the triangles.
Next is to get the value of x;
Similarly;
[tex]\begin{gathered} \sin \text{ 60 = }\frac{h}{x} \\ \text{ sin60 = }\frac{7\sqrt[]{3}}{x} \\ x\text{ = }\frac{7\sqrt[]{3}}{\sin 60} \\ x\text{ = }\frac{7\sqrt[]{3}}{\frac{\sqrt[]{3}}{2}} \\ x\text{ = 7}\sqrt[]{3}\times\frac{2}{\sqrt[]{3}} \\ x\text{ = 7}\cdot2 \\ x\text{ =14} \end{gathered}[/tex]Hence the value of x required is 14