Respuesta :
Answer:
Rewriting p(x) as a product of linear functions, we have;
[tex]p(x)=(2x+3)(x+5)(x+2)[/tex]Explanation:
We want to write the given polynomial p(x) as a product of linear functions.
[tex]p(x)=2x^3+17x^2+41x+30[/tex]To write it as a product of linear functions we have to find the other factors;
let us divide the given polynomial by the given factor;
[tex]\begin{gathered} \text{ }2x^2+7x+6 \\ (x+5)\sqrt[]{2x^3+17x^2+41x+30} \\ \text{ - (}2x^3+10x^2) \\ \text{ }7x^2+41x+30 \\ \text{ }-(7x^2+35x) \\ \text{ }6x+30 \\ \text{ - (}6x+30) \\ \text{ 0} \end{gathered}[/tex]So, the division gives;
[tex]p(x)=2x^3+17x^2+41x+30=(x+5)(2x^2+7x+6)[/tex]next, we need to find the factors of the quadratic function;
[tex]\begin{gathered} 2x^2+7x+6 \\ 2x^2+4x+3x+6 \\ 2x(x+2)+3(x+2) \\ (2x+3)(x+2)_{} \end{gathered}[/tex]Substituting the factors of the quadratic function, we have;
[tex]\begin{gathered} p(x)=2x^3+17x^2+41x+30=(x+5)(2x^2+7x+6) \\ p(x)=(x+5)(2x+3)(x+2)_{} \\ p(x)=(2x+3)(x+5)(x+2) \end{gathered}[/tex]Therefore, rewriting p(x) as a product of linear functions, we have;
[tex]p(x)=(2x+3)(x+5)(x+2)[/tex]