The given set of equations is,
[tex]\begin{gathered} 3x=5-4y \\ \Rightarrow3x+4y-5=0\ldots\text{.}(1) \\ 6x+8y=7 \\ \Rightarrow6x+8y-7=0\ldots\ldots(2) \end{gathered}[/tex]The ratio of coefficient can be determined as,
[tex]\begin{gathered} \frac{a_1}{a_2}=\frac{3}{6}=\frac{1}{2}_{} \\ \frac{b_1}{b_2}=\frac{4}{8}=\frac{1}{2} \\ \frac{c_1}{c_2}=\frac{-5}{-7}=\frac{5}{7} \\ \frac{a_1}{a_2}=\frac{b_1}{b_2}\ne\frac{c_1}{c_2} \end{gathered}[/tex]Thus, the solution is inconsistent as there is no solution.
Thus, option (B) is the correct solution.