Respuesta :

ANSWER

[tex]S_{\infty}=6[/tex]

EXPLANATION

Given:

1. First term (a) = 3

2. Common ration (r) = 3/6

Desired Outcome:

Infinite sum of the geometric sequence.

The formula to calculate the infinite sum of the geometric sequence

[tex]S_{\infty}=\frac{a(1-r^n)}{1-r}[/tex]

Now, as n approaches infinity,

[tex]1-r^n\text{ approaches 1}[/tex]

So,

[tex]\frac{a(1-r^n)}{1-r}\text{ approaches }\frac{a}{1-r}[/tex]

Therefore,

[tex]S_{\infty}=\frac{a}{1-r}[/tex]

Substitute the values

[tex]\begin{gathered} S_{\infty}=\frac{3}{1-\frac{3}{6}} \\ S_{\infty}=\frac{3}{1-\frac{1}{2}} \\ S_{\infty}=\frac{3}{\frac{1}{2}} \\ S_{\infty}=6 \end{gathered}[/tex]

Hence, the infinite sum of the geometric sequence is 6.