Respuesta :

Remember the following:

[tex]\begin{gathered} \sin(0)=0 \\ \\ \sin\left(\frac{\pi}{6}\right)=\frac{1}{2} \\ \\ \sin\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\ \\ \sin\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \\ \\ \sin\left(\frac{\pi}{2}\right)=1 \end{gathered}[/tex][tex]\begin{gathered} \cos(0)=1 \\ \\ \cos\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\ \\ \cos\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\ \\ \cos\left(\frac{\pi}{3}\right)=\frac{1}{2} \\ \\ \cos\left(\frac{\pi}{2}\right)=0 \end{gathered}[/tex]

The terminal point of an angle θ is given by:

[tex](\cos\theta,\sin\theta)[/tex]

For θ=π/2, we have:

[tex](\cos\frac{\pi}{2},\sin\frac{\pi}{2})=(0,1)[/tex]

Therefore, the answer is: option B) Terminal point: (0,1), sinθ=1.