Solve first for the slope intercept form for the equation x + 3y = 24.
[tex]\begin{gathered} \text{The slope intercept form is }y=mx+b \\ \text{Convert }x+3y=24\text{ to slope intercept form} \\ x+3y=24 \\ 3y=-x+24 \\ \frac{3y}{3}=\frac{-x}{3}+\frac{24}{3} \\ y=-\frac{1}{3}x+8 \\ \\ \text{In the slope intercept form }y=mx+b,\text{ m is the slope. Therefore, the slope of} \\ y=-\frac{1}{3}x+8,\text{ is }-\frac{1}{3}\text{ or } \\ m=-\frac{1}{3} \end{gathered}[/tex]Since they are parallel, then they should have the same slope m. We now solve for b using the point (-2,-3)
[tex]\begin{gathered} (-2,-3)\rightarrow(x,y) \\ \text{Therefore} \\ x=-2 \\ y=-3 \\ \text{and as solved earlier, }m=-\frac{1}{3} \\ \\ \text{Substitute the values to the slope intercept form} \\ y=mx+b \\ -3=(-\frac{1}{3})(-2)+b \\ -3=\frac{2}{3}+b \\ -3-\frac{2}{3}=b \\ \frac{-9-2}{3}=b \\ b=-\frac{11}{3} \end{gathered}[/tex]After solving for b, complete the equation.
[tex]y=-\frac{1}{3}x-\frac{11}{3}\text{ (final answer)}[/tex]