Respuesta :
Part A)
According to the text, the equation that relates x and y is:
[tex]y=\frac{14}{x}[/tex]Substitute x=21 to find the value of y when x=21:
[tex]y=\frac{14}{21}[/tex]Simplify the expression:
[tex]\frac{14}{21}=\frac{7\cdot2}{7\cdot3}=\frac{2}{3}[/tex]Therefore, the value of y when x=21 is:
[tex]\frac{2}{3}[/tex]Part B)
To find the value of x when y=28, substitute y=28 and solve for x:
[tex]\begin{gathered} y=\frac{14}{x} \\ \Rightarrow28=\frac{14}{x} \\ \Rightarrow28x=14 \\ \Rightarrow x=\frac{14}{28} \\ \therefore x=\frac{1}{2} \end{gathered}[/tex]Therefore, the value of x when y=28 is:
[tex]\frac{1}{2}[/tex]Part C)
Since the pressure P is inversely proportional to the volume V, then:
[tex]P=\frac{k}{V}[/tex]Solve for k and substitute P=250kPa and V=1.7m^2 to find the constant of proportionality:
[tex]\begin{gathered} \Rightarrow k=PV \\ =(250\text{kPa})(1.7m^3) \\ =425\text{kPa}\cdot m^3 \end{gathered}[/tex]Therefore, the constant of proportionality for this situation is:
[tex]425\text{ kPa}\cdot m^3[/tex]Part D)
Substitute the value of k into the equation that shows the inverse relation between P and V:
[tex]\begin{gathered} P=\frac{k}{V} \\ \Rightarrow P=\frac{425\text{ kPa}\cdot m^3}{V} \end{gathered}[/tex]Therefore, the inverse variation equation model for this situation, is:
[tex]P=\frac{425\text{ kPa}\cdot m^3}{V}[/tex]Part E)
Substitute V=3.2m^3 to find the pressure under those conditions:
[tex]\begin{gathered} P=\frac{425\text{ kPa}\cdot m^3}{3.2m^3} \\ =132.8\text{kPa} \end{gathered}[/tex]Therefore, the pressure would be:
[tex]132.8\text{kPa}[/tex]Part F)
Isolate V from the equation and substitute P=150kPa:
[tex]\begin{gathered} V=\frac{425\text{ kPa}\cdot m^3}{P} \\ =\frac{425\text{ kPa}\cdot m^3}{150\text{ kPa}} \\ =2.83m^3 \end{gathered}[/tex]Therefore, the approximate volume would have to be equal to:
[tex]2.83m^3[/tex]Part G)
Since the temperature has decreased, the pressure must be lower according to the description provided in the text. Then, an inequality to model this situation would be:
[tex]P<\frac{k}{V}[/tex]Part H)
Substitute the value of k and V=3m^3:
[tex]\begin{gathered} P<\frac{425\text{ kPa}\cdot m^3}{3m^3} \\ \Rightarrow P<141.7\text{ kPa}^{} \end{gathered}[/tex]Part I)
Mathematically, all numbers under 141.7 satisfy the inequality from part H. Nevertheless, negative pressures do not have a physical meaning under the context of the Ideal Gas Law. Therefore, we must include the condition that P is greater than 0:
[tex]0