Respuesta :
Solution:
Given the transformation below:
Given the directions:
[tex]\begin{gathered} Rotate\text{ 180 degrees} \\ Reflect\text{ over the y-axis} \\ Translate\text{ 4 unnts to the right} \end{gathered}[/tex]Step 1: Give the coordinates of the vertices of pentagon PENTA.
Thus,
[tex]\begin{gathered} P(-5,5) \\ E(-3,\text{ 5\rparen} \\ N(-4,\text{ 4\rparen} \\ T(-3,\text{ 2\rparen} \\ A(-5,\text{ 2\rparen} \end{gathered}[/tex]step 2: Rotate the pentagon 180 degrees.
For 180 degrees rotation, we have
[tex]\begin{gathered} A(x,y)\to A^{\prime}(-x,\text{ -y\rparen} \\ where \\ A^{\prime}\text{ is an image of A} \end{gathered}[/tex]Thus, the coordinates of pentagon becomes
[tex]\begin{gathered} P(5,\text{ -5\rparen} \\ E(3,\text{ -5\rparen} \\ N(4,\text{ -4\rparen} \\ T(3,\text{ -2\rparen} \\ A(5,\text{ -2\rparen} \end{gathered}[/tex]The image is shown below:
step 3: Reflect over the y-axis.
For reflection over the y-axis, we have
[tex](x,y)\to(-x,y)[/tex]This, we have the image to be
step 4: Translate 4 units to the right.
For translation by 4 units to the right, we have
[tex](x,y)\to(x+4,\text{ y\rparen}[/tex]This gives
Hence, the mistake Madelyn made was that she reflected over the x-axis instead of the y-axis.
The correct option is B.