A random number generator is programmed to produce numbers with a Unif (−7,7) distribution. Find the probability that the absolute value of the generated number is greater than or equal to 1.5.

Respuesta :

We are given the following uniform distribution:

The probability that the absolute value of the number is in the following interval:

[tex]\begin{gathered} -7The probability is the area under the curve of the distribution. Therefore, we need to add both areas. The height of the distribution is:[tex]H=\frac{1}{b-a}[/tex]

Where:

[tex]\begin{gathered} a=-7 \\ b=7 \end{gathered}[/tex]

Substituting we get:

[tex]H=\frac{1}{7-(-7)}=\frac{1}{14}[/tex]

Therefore, the areas are:

[tex]P(\lvert x\rvert>1.5)=(-1.5-(-7))(\frac{1}{14})+(7-1.5)(\frac{1}{14})[/tex]

Simplifying we get:

[tex]P(\lvert x\rvert>1.5)=2(7-1.5)(\frac{1}{14})[/tex]

Solving the operations:

[tex]P(\lvert x\rvert>1.5)=0.7857[/tex]

Therefore, the probability is 0.7857 or 78.57%.

Ver imagen BlayzeE253099