For a direct variation between each point (x, y),
[tex]\begin{gathered} x\propto y \\ x=ky \\ k=\frac{x}{y} \end{gathered}[/tex]For (x₁, y₁) = (3, 12),
[tex]\begin{gathered} k=\frac{3}{12} \\ k=0.25 \end{gathered}[/tex]To find n, consider (n, 8) = (x, y)
[tex]\begin{gathered} x=ky \\ \end{gathered}[/tex]Substituting,
[tex]\begin{gathered} n=0.25\times8 \\ n=2 \end{gathered}[/tex]Therefore, the value of n is 2