Respuesta :

Evaluate the logarithmic functions provided at different values of x to see which matches better the data from the y column:

1) f(x)= 60.04 - 8.25 * ln(x)

[tex]\begin{gathered} f(1)=60.04-8.25\ln (1) \\ =60.04 \\ \\ f(2)=60.04-8.25\ln (2) \\ =54.32\ldots \\ \\ f(3)=60.04-8.25\ln (3) \\ =50.97\ldots \\ \\ f(4)=60.04-8.25\ln (4) \\ =48.60 \\ \\ f(5)=60.04-8.25\ln (5) \\ =46.76 \\ \\ f(6)=60.04-8.25\ln (6) \\ =45.26\ldots \\ \\ f(7)=60.04-8.25\ln (7) \\ =43.98\ldots \end{gathered}[/tex]

2) f(x) = 8.25 - 60.04 * ln(x)

[tex]\begin{gathered} f(1)=8.25-60.04\ln (1) \\ =8.25 \\ \\ f(2)=8.25-60.04\ln (2) \\ =-33.36\ldots \\ \\ f(3)=8.25-60.04\ln (3) \\ =-57.71\ldots \\ \\ f(4)=8.25-60.04\ln (4) \\ =-74.98\ldots \\ \\ f(5)=8.25-60.04\ln (5) \\ =-88.38\ldots \\ \\ f(6)=8.25-60.04\ln (6) \\ =-99.32\ldots \\ \\ f(7)=8.25-60.04\ln (7) \\ =-108.58\ldots \end{gathered}[/tex]

The rest of the given functions are not logarithmic.

We can see from the computed values for the given logarithmic functions, that the one which best fits the data, is: f(x)=60.04-8.25*ln(x).

Therefore, the answer is:

[tex]f(x)=60.04-8.25\ln (x)[/tex]