Respuesta :

The Solution:

Given the expression below:

[tex]10\text{ }\sqrt[]{112m^6}[/tex]

We are asked to simplified in radical form.

Let's find the factors of 112.

[tex]\begin{gathered} 112=2\times56 \\ =2\times2\times28 \\ =2\times2\times2\times14 \\ =2\times2\times2\times2\times7 \end{gathered}[/tex][tex]\sqrt[]{m^6}=\sqrt[]{m^3\times m^3}[/tex]

So,

[tex]\sqrt[]{112m^6}=\sqrt[]{112\times m^3\times m^3}=\sqrt[]{2\times2\times2\times2\times7\times m^3\times m^3}[/tex]

[tex]10\sqrt[]{112m^6}=10\sqrt[]{2\times2\times2\times2\times7\times m^3\times m^3}=10(2\times2\times m^3)\text{ }\sqrt[]{7}[/tex]

Thus,

[tex]10\sqrt[]{112m^6}=\text{ }10(2\times2\times m^3)\text{ }\sqrt[]{7}=10(4)m^3\text{ }\sqrt[]{7}=40m^3\text{ }\sqrt[]{7}[/tex]

Therefore, the correct answer is

[tex]40m^3\text{ }\sqrt[]{7}[/tex]