Respuesta :

Answer:

(x+4)(x-5)

Step-by-step explanation:

Second order polynomial in the following format:

ax² + bx + c = 0

Has roots x¹ and x².

Can be factored as:

(x - x¹)(x - x²)

So, we have to find the roots.

Finding the roots:

Bhaskara formula, which is:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

In the polynomial given in this question:

a = 1, b = -1, c = -20

So

[tex]x=\frac{-(-1)\pm\sqrt{(-1)^2-4\ast1\ast(-20)}}{2}=\frac{1\pm\sqrt{81}}{2}[/tex]

The roots are:

[tex]x^1=\frac{1+9}{2}=5,x^2=\frac{1-9}{2}=-4[/tex]

The factored form is:

(x - x¹)(x - x²) = (x - (-4))(x - 5) = (x+4)(x-5)