Given:
-x+y=2
x-y=2
x+y=-2
-x-y=-2
To match the correct slope-intercept form of an equation, we follow the process as shown below:
Standard Form: Ax+By=C
Conversion: y= -A/Bx+C/B
So,
For -x+y=2:
A=-1
B=1
C=2
Hence,
[tex]\begin{gathered} y=-\frac{A}{B}x+\frac{C}{B} \\ y=-\frac{-1}{1}x+\frac{2}{1} \\ Simplify \\ y=x+2 \end{gathered}[/tex]For x-y=2,
A=1
B=-1
C=2
So,
[tex]\begin{gathered} y=-\frac{A}{B}x+\frac{C}{B} \\ =-\frac{1}{-1}x+\frac{2}{-1} \\ Simplify \\ y=x-2 \end{gathered}[/tex]For x+y=-2,
A=1
B=1
C=-2
So,
[tex]\begin{gathered} y=-\frac{A}{B}x+\frac{C}{B} \\ y=-\frac{1}{1}x+\frac{-2}{1} \\ y=-x-2 \end{gathered}[/tex]For -x-y=-2,
A=-1
B=-1
C=-2
So,
[tex]\begin{gathered} y=-\frac{A}{B}x+\frac{C}{B} \\ =-\frac{-1}{-1}x+\frac{-2}{-1} \\ Simplify \\ y=-x+2 \end{gathered}[/tex]Therefore, the answers are:
-x+y=2----y=x+2
x-y=2-----y=x-2
x+y=-2----y= -x-2
-x-y=-2----y= -x+2