The discriminant of a quadratic equation tells us whether there are two solutions, one solution or no real solutions and it is described as the part inside the root
[tex]D=b^2-4a\cdot c[/tex]the conditions are:
[tex]\begin{gathered} D>0;\text{ two real solutions } \\ D=0;\text{ one real solution} \\ D<0;\text{ no real solution} \end{gathered}[/tex]give values to a, b, and c, which are 7, 9, and j respectively.
using the third condition find the values for j that make the quadratic equation have no solution
[tex]\begin{gathered} 9^2-4\cdot7\cdot j<0 \\ \end{gathered}[/tex]solve the inequality
[tex]\begin{gathered} 81-28j<0 \\ -28j<-81 \\ 28j>81 \\ j>\frac{81}{28} \end{gathered}[/tex]