Producing cost:
[tex]45x+300[/tex]Revenue:
[tex]85x-0.5x^2[/tex]The profit (P) is equal to substract the producing cost for the revenue:
[tex]\begin{gathered} P=(85x-0.5x^2)-(45x+300) \\ P=85x-0.5x^2-45x-300 \\ P=40x-0.5x^2-300 \end{gathered}[/tex]
You can write also as:
[tex]P=-0.5x^2+40x-300[/tex]----------------------------------
P=50:
[tex]50=-0.5x^2+40x-300[/tex]To solve for x:
Substract 50 in both sides of the equation:
[tex]\begin{gathered} 50-50=-0.5x^2+40x-300-50 \\ 0=-0.5x^2+40x-350 \end{gathered}[/tex]Use the quadratic formula:
[tex]\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}[/tex][tex]\begin{gathered} x=\frac{-40\pm\sqrt[]{40^2-4(-0.5)(-350)}}{2(-0.5)} \\ \\ x=\frac{-40\pm\sqrt[]{1600-700}}{-1} \\ \\ x=\frac{-40\pm\sqrt[]{900}}{-1} \\ \\ x=\frac{-40\pm30}{-1} \\ \\ x_1=\frac{-40+30}{-1}=\frac{-10}{-1}=10 \\ \\ x_2=\frac{-40-30}{-1}=\frac{-70}{-1}=70 \end{gathered}[/tex]Then, the two values of x that make a profit of $50 are: 10 and 70------------------ ----------------------
P=2500
[tex]2500=-0.5x^2+40x-300[/tex]Solve for x:
[tex]\begin{gathered} 0=-0.5x^2+40x-300-2500 \\ 0=-0.5x^2+40x-2800 \\ \\ x=\frac{-40\pm\sqrt[]{40^2-4(-0.5)(-2500)}}{2(-0.5)} \\ \\ x=\frac{-40\pm\sqrt[]{1600-5000}}{-1} \\ \\ x=\frac{-40\pm\sqrt[]{-34000}}{-1} \end{gathered}[/tex]As the number under the square root is a negative number the equation has no solution (value of x) in the real numbers.
No, is not possible for the company to make a profit of $2500