Respuesta :

Explanation

Length of CD

From the picture, we know two sides and an angle of the triangle CDE. We define the sides and angle:

• a = EC = 440.68,

,

• b = ED = 470.43,

,

• c = CD = ?,

,

• γ = 60° 06' 09''.

From trigonometry, we know that the Law of Cosines states that:

[tex]\begin{gathered} c^2=a^2+b^2-2ab\cdot\cos\gamma, \\ c=\sqrt{a^2+b^2-2ab\cdot\cos\gamma}. \end{gathered}[/tex]

Where the angle γ and the sides a, b and c are defined by:

Replacing the values from above in the equation for side c, we get:

[tex]c=\sqrt{(440.68)^2+(470.43)^2-2\cdot440.68\cdot470.43\cdot\cos(60\degree06^{\prime}09^{\prime}^{\prime})}\cong457.10.[/tex]

Length of AB

To compute the length of AB, first, we must compute the length of sides AE and EB.

Side EB

From the picture, we see a triangle ECA. Using the data of the picture, we have:

• EC = 440.68,

,

• ∠E = 60° 06' 09'',

,

• EA = ?,

,

• ∠A = ?.

,

• ∠C = 97° 17' 42''.

Angles ∠A, ∠E and ∠C are the inner angles of triangle ECA, so they must sum up 180°, so we have:

[tex]\begin{gathered} ∠A+∠E+∠C=180\degree, \\ ∠A=180\degree-∠E-∠C, \\ ∠A=180\degree-60\degree06^{\prime}09^{\prime\prime}-97\degree17^{\prime}42^{\prime\prime}=22°36^{\prime}9^{\prime\prime}. \end{gathered}[/tex]

Now, we define the following sides and angles:

• c' = EC = 440.68,

,

• γ' = ∠A = 22° 36' 9''

,

• a' = EA = ?,

,

• α = ∠C = 97° 17' 42''.

Now, from trigonometry, we know that the Law of Sine states that:

Using the equation that relates a' and c', we have:

[tex]\begin{gathered} \frac{a^{\prime}}{\sin\alpha^{\prime}}=\frac{c^{\prime}}{\sin\gamma^{\prime}}, \\ a^{\prime}=c^{\prime}*\frac{\sin\alpha^{\prime}}{\sin\gamma^{\prime}}. \end{gathered}[/tex]

Replacing the values from above, we get:

[tex]EA=a^{\prime}=440.68*\frac{\sin(97°17^{\prime}42^{\prime\prime}^)}{\sin(22°36^{\prime}9^{\prime\prime})}[/tex]

Side AE

From the picture, we see a triangle EDB. Using the data of the picture, we have:

• b' = ED = 470.43,

,

• ∠E = 60° 06' 09'',

,

• a' = EB = ?,

,

• α' = ∠D = 180° - 87° 20' 24'' = 92° 39' 36'',

,

• β' = ∠B = 180° - ∠D - ∠E = 180° - 92° 39' 36'' - 60° 06' 09'' = 27° 14' 15''.

Applying the law of sines, we have that:

[tex]\begin{gathered} \frac{a^{\prime}}{\sin(\alpha^{\prime})}=\frac{b^{\prime}}{\sin(\beta^{\prime})}, \\ EB=a^{\prime}=b^{\prime}*\frac{\sin(\alpha^{\prime})}{\sin(\beta^{\prime})}. \end{gathered}[/tex]

Replacing the values from above, we get:

[tex]undefined[/tex]

s

Answer

s

Ver imagen CaylenY430045
Ver imagen CaylenY430045