The slope-intercept form is
[tex]y=mx+b[/tex]First we find m which is defined as rise / run
[tex]m=\frac{\text{rise}}{\text{run}}=\frac{y_1-y_2}{x_1-x_2}[/tex][tex]\Rightarrow m=\frac{(\frac{11}{12})-(\frac{19}{20})}{(\frac{1}{3})-(\frac{2}{5})}[/tex][tex]m=\frac{1}{2}[/tex]And finally, we find the y-intercept b from one of the points given.
Let us use the point (1/3, 11/12).
[tex]\frac{11}{12}=\frac{1}{2}(\frac{1}{3})+b[/tex][tex]\frac{11}{12}=\frac{1}{6}+b[/tex][tex]b=\frac{11}{12}-\frac{1}{6}[/tex][tex]b=\frac{3}{4}[/tex]Hence, the equation of the line in slope-intercept form is
[tex]y=\frac{1}{2}x+\frac{3}{4}[/tex]which is the second choice in the column.