In this problem, we are trying to choose between using a permutation and a combination.
The main difference between the two is the order.
In a combination, order doesn't matter, but it does matter in a permutation. Since the coach is choosing people based on how they performed, this will be a permutation.
For the first box on your screen, you should drag and drop the "P" variable for permutation.
Next, we need to apply the permutation formula:
[tex]_nP_r=\frac{n!}{(n-r)!}[/tex]I'm assuming there are a total of 14 players on the team? So we will let
[tex]\begin{gathered} n=14 \\ r=3 \end{gathered}[/tex]Where n represents the total number of players, and r represents the number of people being chosen based on performance. Then we have:
[tex]\frac{14!}{(14-3)!}=\frac{14!}{11!}[/tex]You can drag the 14! to the numerator and the 11! to the denominator.
Finally, we need to simplify to get the final answer. We can always use a calculator, but I'll show the steps for simplifying here:
[tex]\begin{gathered} \text{ Rewrite}14! \\ \frac{14\cdot13\cdot12\cdot11!}{11!} \end{gathered}[/tex][tex]\begin{gathered} \text{ Cancel the }11! \\ \\ \frac{14\cdot13\cdot12\cdot\cancel{11!}}{\cancel{11!}} \end{gathered}[/tex]Multiply the remaining values:
[tex]14\cdot13\cdot12=2184[/tex]The coach has 2184 ways to choose a player.