-1
Explanation
let's remember the indentities
[tex]\begin{gathered} tan\theta=\frac{sen\text{ \lparen x\rparen}}{cos\text{ \lparen x\rparen}} \\ cot\theta=\frac{cos(x)}{sin(x)} \end{gathered}[/tex]so
Step 1
let the expression
[tex]-tan(-x)cot(-x)=?[/tex]rewrite the expression:
replace using the identity
[tex]\begin{gathered} -tan(-x)cot(-x)=? \\ -tan(-x)cot(-x)=-\frac{\sin(-x)}{cos(-x)}*\frac{cos(-x)}{\sin(-x)} \\ -tan(-x)cot(-x)=-\frac{\sin(-x)}{sin(-x)}\frac{cos\left(-x\right)}{\sin(*x)} \\ -tan(-x)cot(-x)=-1*1 \\ -tan(-x)cot(-x)=-1 \end{gathered}[/tex]therefore, the answer is
-1
I hope this helps you