Respuesta :

Recall that the nth term of an arithmetic sequence is as follows:

[tex]\begin{gathered} a_n=a_1+d(n-1), \\ where\text{ }a_1\text{ is the first element and d is the common difference between terms.} \end{gathered}[/tex]

We know that:

[tex]\begin{gathered} a_1=200, \\ d=20. \end{gathered}[/tex]

Therefore:

1) The second term of the given arithmetic sequence is:

[tex]a_2=200+20(2-1),[/tex]

simplifying the above result we get:

[tex]a_2=200+20(1)=220.[/tex]

2) The third term of the given arithmetic sequence is:

[tex]a_3=200+20(3-1)=200+20(2)=240.[/tex]

3) The fourth therm is:

[tex]a_4=200+20(4-1)=200+20(3)=260.[/tex]

4) The fifth term is:

[tex]a_5=200+20(5-1)=200+20(4)=280.[/tex]

5) The sixth term is:

[tex]a_6=200+20(6-1)=200+20(5)=300.[/tex]

Answer: The first six terms of the given sequence are:

[tex]200,\text{ }220,\text{ }240,\text{ }260,\text{ }280,\text{ }300.[/tex]