Recall that the nth term of an arithmetic sequence is as follows:
[tex]\begin{gathered} a_n=a_1+d(n-1), \\ where\text{ }a_1\text{ is the first element and d is the common difference between terms.} \end{gathered}[/tex]We know that:
[tex]\begin{gathered} a_1=200, \\ d=20. \end{gathered}[/tex]Therefore:
1) The second term of the given arithmetic sequence is:
[tex]a_2=200+20(2-1),[/tex]simplifying the above result we get:
[tex]a_2=200+20(1)=220.[/tex]2) The third term of the given arithmetic sequence is:
[tex]a_3=200+20(3-1)=200+20(2)=240.[/tex]3) The fourth therm is:
[tex]a_4=200+20(4-1)=200+20(3)=260.[/tex]4) The fifth term is:
[tex]a_5=200+20(5-1)=200+20(4)=280.[/tex]5) The sixth term is:
[tex]a_6=200+20(6-1)=200+20(5)=300.[/tex]Answer: The first six terms of the given sequence are:
[tex]200,\text{ }220,\text{ }240,\text{ }260,\text{ }280,\text{ }300.[/tex]