We have to find the area within the given curves.
We have to integrate the difference between the two functions.
First, we have to find the intersections between the curves to know the interval for which we will integrate.
We then write:
[tex]\begin{gathered} y_1=y_2 \\ x^2=4\Rightarrow x_i=-2,x_f=2 \end{gathered}[/tex]We will integrate in the interval [-2, 2]. In this interval, the function y=4 is greater than y=x^2, so we will integrate the difference of the functions as:
[tex]\begin{gathered} A=\int ^2_{-2}\lbrack y_2(x)-y_1(x)\rbrack dx \\ A=\int ^2_{-2}(4-x^2)dx \\ A=4x-\frac{x^3}{3}+C \\ A=(4\cdot(2)-\frac{(2)^3}{3})-(4\cdot(-2)-\frac{(-2)^3}{3}) \\ A=(8-\frac{8}{3})-(-8+\frac{8}{3}) \\ A=8-\frac{8}{3}+8-\frac{8}{3} \\ A=16-\frac{16}{3} \\ A=\frac{48-16}{3} \\ A=\frac{32}{3} \end{gathered}[/tex]The area bounded by the curves y=x^2 and y=4 is A = 32/3.