Solution
The hexagon given is a regular hexagon. With apothem of 15 in
Area of a hexagon =
[tex]\begin{gathered} =\frac{1}{2}\times a\times P \\ \text{where a = apothem} \\ p=\text{perimeter of the hexagon} \end{gathered}[/tex]Let us calculate the perimeter of the hexagon
From the triangle above,
[tex]\begin{gathered} \text{tan 60=}\frac{15}{x} \\ x\text{ tan 60 = 15} \\ x=\frac{15}{\tan 60} \\ x=5\sqrt[]{3} \end{gathered}[/tex][tex]\text{The side length of the hexagon = 2x = 2(5}\sqrt[]{3})\text{ = 10}\sqrt[]{3}\text{ in}[/tex][tex]\text{The perimeter of the hexagon = 6 x 10}\sqrt[]{3}\text{ = 60}\sqrt[]{3}\text{ in}[/tex][tex]\begin{gathered} \text{Area of the hexagon = }\frac{1}{2}\times a\times P \\ =\frac{1}{2}\text{ x 15 x 60}\sqrt[]{3} \\ =779.42in^2 \\ \\ Hence,\text{ the area of the polygon is }779in^2\text{ (to nearest wholw number)} \end{gathered}[/tex]