Two points A(0,-4), B(2,-1)determine line AB.What is the equation of the line AB? y= _1_x + _2_What is the equation of the line perpendicular to lineAB, passing through the point (2,-1)? y= _3_x + _4

Respuesta :

1.

Let:

[tex]\begin{gathered} (x1,y1)=(0,-4) \\ (x2,y2)=(2,-1) \\ so\colon \\ m1=\frac{y2-y1}{x2-x1}=\frac{-1-(-4)}{2-0}=\frac{3}{2} \end{gathered}[/tex]

Using the point-slope equation:

[tex]\begin{gathered} y-y1=m1(x-x1) \\ y-(-4)=\frac{3}{2}(x-0) \\ y+4=\frac{3}{2}x \\ y=\frac{3}{2}x-4 \end{gathered}[/tex]

2.

If two lines are perpendicular, then:

[tex]\begin{gathered} m1\times m2=-1 \\ \frac{3}{2}\times m2=-1 \\ m2=-\frac{2}{3} \end{gathered}[/tex]

Let:

[tex](x1,y1)=(2,-1)[/tex]

Using the point slope equation:

[tex]\begin{gathered} y-y1=m2(x-x1) \\ y-(-1)=-\frac{2}{3}(x-2) \\ y+1=-\frac{2}{3}x+\frac{4}{3} \\ y=-\frac{2}{3}x+\frac{1}{3} \end{gathered}[/tex]

Ver imagen NashayL550909