Answer:
2 cats and 2 dogs
Explanation:
Representations:
x = number of cats sold
y = number of dogs sold
Equations:
We know that it sells a total of 4 pets, so the sum of the number of cats and dogs is 4. So:
x + y = 4
On the other hand, they make $300, and they make $50 for each cat and $100 for each dog, so:
$50x + $100y = $300
So, the system of equation is:
x + y = 4
50x + 100y = 300
Graph:
Now, we need to graph the equations, so we need to identify two points for each equation:
For x + y = 4
If x = 0, then:
0 + y = 4
y = 4
If x = 4, then:
4 + y = 4
4 + y - 4 = 4 - 4
y = 0
For 50x + 100y = 300
If x = 0, then:
50(0) + 100y = 300
100y = 300
100y/100 = 300/100
y = 3
If x = 4, then:
50(4) + 100y = 300
200 + 100y = 300
200 + 100y - 200 = 300 - 200
100y = 100
100y/100 = 100/100
y = 1
Therefore, we have the points (0, 4) and (4, 0) to graph the line of the first equation and the points (0, 3) and (4, 1) to graph the line of the second equation.
So, the graph of the system is:
Therefore, the solution is the intersection point (2, 2), so they sold 2 cats and 2 dogs that day.