Answer
[tex]f^{-1}(x)=\frac{-1}{5}x-\frac{4}{5}[/tex]Explanation
The given function is
[tex]f(x)=-5x-4[/tex]Let y = f(x), this implies
[tex]y=-5x-4[/tex]Now, make x the subject of the formula
[tex]\begin{gathered} y=-5x-4 \\ 5x=-y-4 \\ \text{To get x, we divide both sides by 5} \\ \frac{5x}{5}=\frac{-y-4}{5} \\ \\ x=\frac{-y-4}{5} \end{gathered}[/tex]Since f(x) = y, then x = f⁻¹(y)
[tex]\begin{gathered} f^{-}^{1}\mleft(y\mright)=\frac{-y-4}{5} \\ \therefore f^{-1}(x)=\frac{-x-4}{5} \end{gathered}[/tex]The above inverse function can be rewritten as follows
[tex]\begin{gathered} f^{-1}(x)=\frac{-x}{5}-\frac{4}{5} \\ f^{-1}(x)=\frac{-1}{5}x-\frac{4}{5} \end{gathered}[/tex]