Solution:
The volume of a cylinder is expressed as
[tex]\begin{gathered} V=\pi\times r^2\times h \\ where \\ V\Rightarrow volume\text{ of the cylinder} \\ r\Rightarrow radius\text{ of its circular ends} \\ h\Rightarrow height\text{ of the cylinder} \end{gathered}[/tex]Given the cylinder below:
we have
[tex]\begin{gathered} height\text{ of the cylinder = 4 cm} \\ diameter\text{ of the circular end = 2 cm} \end{gathered}[/tex]but
[tex]\begin{gathered} radius=\frac{diameter}{2} \\ \Rightarrow r=\frac{d}{2}=\frac{2cm}{2}=1\text{ cm} \end{gathered}[/tex]Thus, the volume of the cylinder is evaluated by substituting the values of 4 cm and 1 cm for h and r respectively into the volume formula.
[tex]\begin{gathered} V=\pi\times1cm\times1cm\times4cm \\ =12.56637 \\ \approx12.6\text{ cubic centimeters} \end{gathered}[/tex]Hence, the volume of the cylinder, to the nearest 1 decimal place is
[tex]12.6\text{ cubic centimeters}[/tex]