Respuesta :

[tex]f(x)=\frac{3}{5}x-\frac{4}{3}[/tex]

At the zero of the function, f(x) = 0. Substituting f(x) = 0, we get:

[tex]0=\frac{3}{5}x-\frac{4}{3}[/tex]

Adding 4/3 at both sides of the equation:

[tex]\begin{gathered} 0+\frac{4}{3}=\frac{3}{5}x-\frac{4}{3}+\frac{4}{3} \\ \frac{4}{3}=\frac{3}{5}x \end{gathered}[/tex]

Multiplying by 5/3 at both sides of the equation:

[tex]\begin{gathered} \frac{5}{3}\cdot\frac{4}{3}=\frac{5}{3}\cdot\frac{3}{5}x \\ \frac{5\cdot4}{3\cdot3}=x \\ \frac{20}{9}=x \end{gathered}[/tex]

Therefore the coordinates of the zero of the function are:

[tex](x,f(x))=(\frac{20}{9},0)[/tex]