Respuesta :

Explanation

The volume of the object is the sum of the volumes of the composite solids that make up the object. Since each solid is a cylinder, we will make use of the formula below.

[tex]\text{Volume of a cylinder =}\pi r^2h[/tex]

The question gives the following parameters for the solids

[tex]\begin{gathered} \text{Solid 1 }\mleft\lbrace r=\frac{4}{2}=2;h=7\mright\rbrace \\ Solid\text{ 2 }\mleft\lbrace r=\frac{8}{2}=4;h=1\mright\rbrace \\ \text{where }\pi=3 \end{gathered}[/tex]

We can substitute the parameters into the formula.

[tex]\begin{gathered} \text{Volume of solid 1=}3\times2^2\times7=84\operatorname{cm}^3 \\ \text{Volume of solid 2 = }3\times4^2\times1=48cm^3 \end{gathered}[/tex]

Therefore;

[tex]\text{Volume of the object }=84+48=132\operatorname{cm}^3[/tex]

Answer:

[tex]132\operatorname{cm}^3[/tex]