Remember that the formula for a geometric sequence is:
[tex]a_n=a_1\cdot r^{n-1}[/tex]PART A:
With the data given, the formula for the sequence is:
[tex]a_n=11_{}\cdot4^{n-1}[/tex]PART B:
[tex]\begin{gathered} a_1=11\cdot4^{1-1}\rightarrow a_1=11 \\ a_2=11\cdot4^{2-1}\rightarrow a_2=44 \\ a_3=11\cdot4^{3-1}\rightarrow a_3=176 \\ a_4=11\cdot4^{4-1}\rightarrow a_4=704 \\ a_5=11\cdot4^{5-1}\rightarrow a_5=2816 \end{gathered}[/tex]PART C:
For part A, we took the general formula for the geometric sequence and plugged in the first term and the common ratio provided.
For part B, we replaced n for all the numbers from 1 through 5 to get the first 5 terms of the sequence.