• In order to understand this, we need to know that an inverse trigonometric function “undo” what the original trigonometric function
• e.g Trig function : inverse of trig. function .
The inverse y = six x parent function will be
[tex]\begin{gathered} y=sinx^{-1}\text{ ; meaning } \\ x\text{ = sin y } \end{gathered}[/tex]• y = sinx ^-1 , has domain at [-1;1] and range at (-/2; /2)
the inverse of y = cos x parent function will be :
[tex]\begin{gathered} y=cosx^{-1};\text{ meaning } \\ x\text{ = cos y } \end{gathered}[/tex]• y = cosx^-1 , has domain at [-1;1] and range at (0;)
The inverse of y = tan x parent function will be :
[tex]\begin{gathered} y=tanx^{-1\text{ }},\text{ meaning } \\ x\text{ = tan y } \end{gathered}[/tex]• y = tanx^-1 has domain at (-∞;∞) and range at (- /2 ; /2)
see the graphs below that shows the asympotes of the trigonometric function.