Respuesta :
Given:
Two populations
Sample Size (n₁) = 202
Success (x₁) = 122
Sample size (n₂) = 340
Success (x₂) = 220
Find: test statistic and p-value of this sample
Solution:
Based on the given data, we have two proportions here and its sample size is large. The test statistic that is appropriate for this would be Test of Two Proportions and the formula is:
[tex]z=\frac{p_1-p_2+cont\text{ }}{\sqrt[]{\frac{p(1-p)}{n_1}+\frac{p(1-p)_{}}{n_2}}}[/tex]in which,
[tex]p=\frac{x_1+x_2}{n_1+n_2}[/tex]Let's solve the value of p first. Let's plug in the given data that we have above.
[tex]p=\frac{122+220}{202+340}=\frac{342}{542}=\frac{171}{271}[/tex]Now that we have the value of p, let's calculate p₁ and p₂. Formula is:
[tex]\begin{gathered} p_1=\frac{x_1}{n_1}=\frac{122}{202}=\frac{61}{101} \\ p_2=\frac{x_2}{n_2}=\frac{220}{340}=\frac{11}{17} \end{gathered}[/tex]Lastly, let's calculate the value of cont or continuity correction. Formula is:
[tex]cont=\frac{F}{2}(\frac{1}{n_1}+\frac{1}{n_2})\text{ }[/tex]For our claim p₁ < p₂, our F = 1.
[tex]cont=\frac{1}{2}(\frac{1}{202}+\frac{1}{340})=0.0039458[/tex]Let's plug these values to the test of two proportions formula:
[tex]\begin{gathered} z=\frac{p_1-p_2+cont\text{ }}{\sqrt[]{\frac{p(1-p)}{n_1}+\frac{p(1-p)_{}}{n_2}}} \\ z=\frac{\frac{61}{101}-\frac{11}{17}+0.0039458}{\sqrt[]{\frac{\frac{171}{271}(1-\frac{171}{271})}{202}+\frac{\frac{171}{271}(1-\frac{171}{271})_{}}{340}}} \end{gathered}[/tex][tex]z=\frac{-0.03915259}{\sqrt[]{\frac{0.2328399668}{202}+\frac{0.2328399668}{340}}}=\frac{-0.03915259}{0.04286603008}\approx-0.913[/tex]Hence, the test statistic is -0.913.
The equivalent p-value for this is 0.1805.
The p-value is greater than α = 0.05.
Since p-value is greater than α, we fail to reject the null hypothesis.