Given
[tex]\frac{(x-4)^2}{4}-\frac{y^2}{9}=1[/tex]Find
Values of a and b for this conic section
Explanation
As we know the standard equation for conic section is given by
[tex]\frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1[/tex]where (h , k) be the vertex
vertices (h+a , k) and (h-a , k)
given equation can be rewrite as
[tex]\frac{(x-4)^2}{2^2}-\frac{y^2}{3^2}=1[/tex]on comparing , we get
a = 2 and b = 3
Final Answer
Therefore , the value of a = 2 and b = 3