The points given are:
(-1, -3) and (4, 2)
Coordinates are:
x₁ =-1 y₁=-3 x₂ = 4 y₂ = 2
First, let's find the slope(m) of the equation using the formula below:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex][tex]=\frac{2+3}{4+1}=\frac{5}{5}=1[/tex]Next, find the inetercept of the equation by substituting x =-1 y=-3 m = 1 into y=mx+ b
-3 = 1(-1) + b
-4 = -1 + b
Add 1 to bothside
-4+1 = b
-3 = b
b = -3
We can now form the equation of the line by simply substituting the value of m and b into y=mx+ b
y = x - 3
Therefore, the equation of the line that satisfies the condition is y = x - 3