The distributive property states:
[tex]a(b+c)=a\cdot b+a\cdot c[/tex]so:
[tex]\begin{gathered} 6(x+3)=6\cdot x+6\cdot3=6x+18 \\ 5(y-4)=5\cdot y-5\cdot4=5y-20 \\ -7(m-1)=-7\cdot m-7\cdot(-1)=-7m+7 \\ 9(3x+2)=9\cdot3x+9\cdot2=27x+18 \\ -3(7+3p)=-3\cdot7-3\cdot3p=-21-9p \\ 1(8x-10)=1\cdot8x+1\cdot10=8x-10 \end{gathered}[/tex]