Given the expressions
[tex]\begin{gathered} (A).2x^2\cdot3x^3\cdot y\cdot3x^3\cdot y= \\ (B).2x^2\cdot3x^{3y}\cdot3x^{3y}= \end{gathered}[/tex]First: we group and multiply the numbers
[tex]\begin{gathered} (A).2x^2\cdot3x^3\cdot y\cdot3x^3\cdot y=(2\cdot3\cdot3)\cdot x^2\cdot x^3\cdot y\cdot x^3\cdot y=18x^2\cdot x^3\cdot y\cdot x^3\cdot y \\ (B).2x^2\cdot3x^{3y}\cdot3x^{3y}=(2\cdot3\cdot3)x^2\cdot x^{3y}\cdot x^{3y}=18x^2\cdot x^{3y}\cdot x^{3y} \end{gathered}[/tex]Now we have the expressions
[tex]\begin{gathered} (A).18x^2\cdot x^3\cdot y\cdot x^3\cdot y \\ (B).18x^2\cdot x^{3y}\cdot x^{3y} \end{gathered}[/tex]Second: we multiply the expressionswith the same base adding its exponents
[tex]\begin{gathered} (A).18x^{2+3+3}\cdot y^{1+1}=18x^8y^2 \\ (B).18x^{2+3y+3y}=18x^{6y+2} \end{gathered}[/tex]