Step 1
Write the formula connecting all variables.
Weight = w
Length = L
Width = b
Height = H
k = constant
[tex]w\text{ = }\frac{kbH^2}{L}[/tex]Step 2
Use the values below to find the constant k.
b = 6
H = 2
L = 12
W = 14
[tex]\begin{gathered} 12\text{ = }\frac{k\text{ }\times\text{ 6 }\times2^2}{12} \\ 14\text{ = }\frac{24k}{12} \\ \text{Cross multiply} \\ 24k\text{ = 14 x 12} \\ 24k\text{ = 1}68 \\ k\text{ = }\frac{168}{24} \\ k\text{ = }7 \end{gathered}[/tex]Step 3
Find the unknow
W = ?
b = 4
H = 3
L = 14
[tex]\begin{gathered} W\text{ = }\frac{kbH^2}{L} \\ W\text{ = }\frac{7\text{ }\times\text{ 4 }\times3^2}{14} \\ W\text{ = }\frac{7\text{ }\times\text{ 4 }\times\text{ 9}}{14} \\ W\text{ = }\frac{252}{14} \\ W=\text{ 18 tons} \end{gathered}[/tex]The maximum weight = 18 tons