Taking l as the length of one of the legs and using the pythagorean theorem we have that:
[tex](2l)^2=l^2+7^2[/tex]Solve the equation for l:
[tex]\begin{gathered} 4l^2=l^2+49 \\ 4l^2-l^2=49 \\ 3l^2=49 \\ l^2=\frac{49}{3} \\ l=\sqrt[]{\frac{49}{3}} \\ l=\frac{7}{\sqrt[]{3}}=\frac{7\sqrt[]{3}}{3} \end{gathered}[/tex]It means that the hypotenuse is:
[tex]\frac{14\sqrt[]{3}}{3}[/tex]And the leg is:
[tex]\frac{7\sqrt[]{3}}{3}[/tex]