As given by the question
There is given that the function
[tex]f(x)=7\lvert x-4\rvert[/tex]Now,
First find the value of f(0):
Then, put the value of 0 for x into the given function.
Now,
[tex]\begin{gathered} f(x)=7\lvert x-4\rvert \\ f(0)=7\lvert0-4\rvert \\ f(0)=7\lvert-4\rvert \\ f(0)=7\cdot4 \\ f(0)=28 \end{gathered}[/tex]Then,
[tex]\begin{gathered} f(x)=7\lvert x-4\rvert \\ f(2)=7\lvert2-4\rvert \\ f(2)=7\lvert-2\rvert \\ f(2)=7\cdot2 \\ f(2)=14 \end{gathered}[/tex]Then,
[tex]\begin{gathered} f(x)=7\lvert x-4\rvert \\ f(-2)=7\lvert-2-4\rvert \\ f(-2)=7\lvert-6\rvert \\ f(-2)=7\cdot6 \\ f(-2)=42 \end{gathered}[/tex]Then,
[tex]\begin{gathered} f(x)=7\lvert x-4\rvert \\ f(x)=7\lvert x+1-4\rvert \\ f(x)=7\lvert x+1-4\rvert \\ f(x)=7\lvert x-3\rvert \end{gathered}[/tex]And,
[tex]\begin{gathered} f(x)=7\lvert x-4\rvert \\ f(x^2+2)=7\lvert x^2+2-4\rvert \\ f(x^2+2)=7\lvert x^2-2\rvert \end{gathered}[/tex]