5. How much must be deposited now at 5% compounded semi-annually to yield an annuity payment of ₱30,000 at the beginning of each 6-month period for 6 years?

Respuesta :

SOLUTION

Given the question in the question tab, the following are the solution steps to calculate the amount to be deposited

STEP 1: Write the formula for Future value annuity

[tex]FV=P\times\frac{(1+r)^n-1}{r}[/tex]

Where:

FV = present value of an ordinary annuity

P=value of each payment

r=interest rate per period

n=number of periods

STEP 2: Write the given parameters

[tex]\begin{gathered} FV=30000,r=5,n=12,r=\frac{5}{100}=0.05,P=? \\ n=12\text{ because }6\text{months period for 6 years will be 2}\times6=12 \end{gathered}[/tex]

STEP 3: Calculate the P

[tex]\begin{gathered} FV=P\times\frac{(1+r)^n-1}{r} \\ 30000=P\times\frac{(1+0.05)^{12}-1}{0.05} \\ 30000=P\times\frac{(1.05)^{12}-1}{0.05} \\ 30000=P\times\frac{(1.05)^{12}-1}{0.05} \\ 30000=P\times\frac{1.795856326^{}-1}{0.05} \\ 30000=P\times\frac{0.795856326^{}}{0.05} \\ 30000=\frac{0.795856326P^{}}{0.05} \\ By\text{ cross multiplication,} \\ 30000\times0.05=0.795856326P \\ 1500=0.795856326P \\ \frac{0.795856326P}{0.795856326}=\frac{1500}{0.795856326} \\ P=1884.762301 \\ P\approx1884.76 \end{gathered}[/tex]

Hence, the amount that must be deposited now is approximately 1884.76 to the nearest cents