Respuesta :

Given:

There is a triangle given as

Required:

We want to find the sutiable form that show that

[tex]x^2+6x-59=0[/tex]

and also complete the square

[tex](x+p)^2-q=0[/tex]

and find the value of p and q

Explanation:

The area of triangle is

[tex]\begin{gathered} \frac{1}{2}(x+1)(x+5)=32 \\ \\ x^2+5x+x+5=64 \\ x^2+6x-59=0 \end{gathered}[/tex]

hence proved for a

Now for second

[tex]\begin{gathered} x^2+6x+9-9-59=0 \\ (x+3)^2-68=0 \end{gathered}[/tex]

now compare with

[tex](x+p)^2-q=0[/tex]

we get

[tex]\begin{gathered} p=3 \\ q=68 \end{gathered}[/tex]

Final answer:

p=3 and q=68

Ver imagen DoryanM723263