We will have the following:
*First: ( f ° g) (x):
[tex](f\circ g)(x)=\frac{(\frac{1}{x})+1}{(\frac{1}{x})-2}\Rightarrow(f\circ g)(x)=\frac{(\frac{1+x}{x})}{(\frac{1-2x}{x})}[/tex][tex]\Rightarrow(f\circ g)(x)=\frac{(1+x)(x)}{(x)(1-2x)}\Rightarrow(f\circ g)(x)=\frac{1+x}{1-2x}[/tex]Domain:
[tex](-\infty,\frac{1}{2})\cup(\frac{1}{2},\infty)[/tex]*Second: (f ° f) (x):
[tex](f\circ f)(x)=\frac{(\frac{x+1}{x-2})+1}{(\frac{x+1}{x-2})-2}\Rightarrow(f\circ f)(x)=\frac{(\frac{(x+1)+(x-2)}{x-2})}{(\frac{(x+1)-2(x-2)}{x-2})}[/tex][tex]\Rightarrow(f\circ f)(x)=\frac{(\frac{2x-1}{x-2})}{(\frac{-x+5}{x-2})}\Rightarrow(f\circ f)(x)=\frac{(2x-1)(x-2)}{(x-2)(-x+5)}[/tex][tex]\Rightarrow(f\circ f)(x)=\frac{2x-1}{-x+5}[/tex]Domain:
[tex](-\infty,5)\cup(5,\infty)[/tex]